Closed Expressions of the Fibonacci Polynomials in Terms of Tridiagonal Determinants

نویسندگان

  • FENG QI
  • JING-LIN WANG
چکیده

In the paper, the authors find a new closed expression for the Fibonacci polynomials and, consequently, for the Fibonacci numbers, in terms of a tridiagonal determinant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Factorization of the Fibonacci and Lucas Numbers Using Tridiagonal Determinants

The aim of this paper is to give new results about factorizations of the Fibonacci numbers Fn and the Lucas numbers Ln. These numbers are defined by the second order recurrence relation an+2 = an+1+an with the initial terms F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively. Proofs of theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and ...

متن کامل

A NOTE ON CERTAIN MATRICES WITH h(x)-FIBONACCI POLYNOMIALS

In this paper, it is considered a g-circulant, right circulant, left circulant and a special kind of tridiagonal matrices whose entries are h(x)-Fibonacci polynomials. The determinant of these matrices is established and with the tridiagonal matrices we show that the determinant is equal to the nth term of the h(x)-Fibonacci polynomials.

متن کامل

Negativity Subscripted Fibonacci And Lucas Numbers And Their Complex Factorizations

In this paper, we …nd families of (0; 1; 1) tridiagonal matrices whose determinants and permanents equal to the negatively subscripted Fibonacci and Lucas numbers. Also we give complex factorizations of these numbers by the …rst and second kinds of Chebyshev polynomials. 1. Introduction The well-known Fibonacci sequence, fFng ; is de…ned by the recurrence relation, for n 2 Fn+1 = Fn + Fn 1 (1.1...

متن کامل

On determinants of tridiagonal matrices with (−1, 1)-diagonal or superdiagonal in relation to Fibonacci numbers

The aim of the paper is to find some new determinants connected with Fibonacci numbers. We generalize the result provided in Strang’s book because we derive that two sequences of similar tridiagonal matrices are connected with Fibonacci numbers. AMS subject classification: Primary 15A15, 11B39; Secondary 11B37, 11B83.

متن کامل

Positive integer powers of certain complex tridiagonal matrices

In this paper, we firstly present a general expression for the entries of the th r   N r power of certain -square n are complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017